Exercises

- **9.3.1** ABCDEF is a regular hexagon with side length 9.
- (a) Find AD.
- (b) Find [ABCDEF].
- (c) \star Find AC.
- **9.3.2** Find a formula for the area of a regular hexagon with side length s.
- **9.3.3** What's wrong with pentagon ABCDE shown at right?
- **9.3.4** ABCDEFGH is a regular octagon with side length 8. Diagonals \overline{AE} and \overline{CG} meet at X. Point M is the midpoint of \overline{AB} .
 - (a) Find the area of ABCDEFGH.
 - (b) Find XM, the apothem of the octagon.
 - (c) Find XC. Hints: 22

- **9.3.6** We solved Problem 9.8 by extending the sides of a regular octagon to form a square. We didn't, however, prove that we form a square when we connect the points where these extensions meet. Fix this oversight by providing the proof. **Hints:** 564
- 9.3.7★ In this section we assumed that the long diagonals of a regular hexagon are concurrent. In this problem we fix this oversight by proving that these diagonals are concurrent.
- (a) Let the hexagon be *ABCDEF* and let point *O* be the intersection of the bisectors of $\angle A$ and $\angle B$. Prove that $\triangle AOB$ is equilateral.
- (b) Draw \overline{OC} . Prove that $\triangle BOC$ is equilateral.
- (c) Prove that $\triangle COD$ is equilateral and that \overrightarrow{AO} goes through D.
- (d) Prove that the long diagonals of ABCDEF all meet at the same point.

